Multinets, Parallel Connections, and Milnor Fibrations of Arrangements
نویسندگان
چکیده
The characteristic varieties of a space are the jump loci for homology of rank 1 local systems. The way in which the geometry of these varieties may vary with the characteristic of the ground field is reflected in the homology of finite cyclic covers. We exploit this phenomenon to detect torsion in the homology of Milnor fibers of projective hypersurfaces. One tool we use is the interpretation of the degree 1 characteristic varieties of a hyperplane arrangement complement in terms of orbifold fibrations and multinets on the corresponding matroid. Another tool is a polarization construction, based on the parallel connection operad for matroids. Our main result gives a combinatorial machine for producing arrangements whose Milnor fibers have torsion in homology.
منابع مشابه
Hyperplane Arrangements and Milnor Fibrations
— There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank 1 local systems on the complement of the arrangement to gain information on the h...
متن کاملar X iv : 1 30 1 . 48 51 v 1 [ m at h . A G ] 2 1 Ja n 20 13 HYPERPLANE ARRANGEMENTS AND MILNOR FIBRATIONS
— There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank 1 local systems on the complement of the arrangement to gain information on the h...
متن کاملOn Milnor Fibrations of Arrangements
We use covering space theory and homology with local coefficients to study the Milnor fiber of a homogeneous polynomial. These techniques are applied in the context of hyperplane arrangements, yielding an explicit algorithm for computing the Betti numbers of the Milnor fiber of an arbitrary real central arrangement in C3, as well as the dimensions of the eigenspaces of the algebraic monodromy. ...
متن کاملJ un 2 00 9 FINITE GALOIS COVERS , COHOMOLOGY JUMP LOCI , FORMALITY PROPERTIES , AND MULTINETS
We explore the relation between cohomology jump loci in a finite Galois cover, formality properties and algebraic monodromy action. We show that the jump loci of the base and total space are essentially the same, provided the base space is 1-formal and the monodromy action in degree 1 is trivial. We use reduced multinet structures on line arrangements to construct components of the first charac...
متن کاملReal Integral Closure and Milnor Fibrations
We give a condition to guarantee the existence of a Milnor fibration for real map germs of corank 1, which include cases that are not L-maps in the sense of Massey. Our approach exploits the structure of a family of functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012